
IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.54236 957

Maintainability Evaluation of Object Oriented

Software: A Systematic Review

Nidhi Goyal
1
, Dr. Reena Srivastava

2

Ph.D, BBDU, Lucknow India
1

Dean, School of Computer Applications, BBDU, Lucknow, India
 2

Abstract: Maintainability has always been an elusive concept. Its correct measurement or evaluation is a difficult

exercise because of the various potential factors affecting software maintainability. Software maintainability involves

external software quality attributes that evaluate the design complexity and effort required for maintaining software.

The support provided by software maintainability is significant during development life cycle and quality assurance.

The key focus of this review paper is an organized study of maintainability taking into consideration the view

provided by its sub factors along with metrics implementation of software maintainability. The aim is to support the

maintenance process and facilitate the formation of improved quality software. This paper accomplishes a systematic

literature review to study widespread facts of maintainability research, its feature factors and related measurements. A

comparative analysis on software maintainability models developed by various researchers/area experts including their

contribution and limitation is also presented. In the end our effort is to find the known wide ranging and complete

model or framework for quantifying the maintainability of software at an early stage of software development life

cycle.

Keywords: Software Maintainability, Maintainability Evaluation, Object Oriented Design, Software Quality, Software

testing.

I. INTRODUCTION

 Software systems are large, complex and beset with

maintenance problems, but at the same time users expect

high quality product within time and budget [1]. However,

it is tough to evaluate and assure software quality. The

ISO/IEC 9126 standard has been developed to address

software quality related issues [2]. It describes software

product quality characteristics and sub characteristics and

proposes metrics for their assessment. It is standard, and

might be applied to any type of software product by being

tailored to a specific purpose [3]. Quality is the totality of

characteristics of an entity that bear on its ability to satisfy

stated and implied customers needs [2]. By using the term

satisfaction, ISO/IEC 9126 quality model implies the

capability of the software to satisfy users in a specified

context of use.

The increase in size and complexity of software drastically

affects several quality characteristics, specially

maintainability and understandability. False interpretation

often leads to ambiguities, misunderstanding and hence to

faulty software development outcomes. Although the fact

that software maintainability and understandability are

vital and most considerable components of the software

development life cycle, it is poorly managed. This is

mainly due to the lack of its proper management and

control. Unfortunately, most of the software industries not

only fail to deliver a quality oriented software product to

their customers, however sometimes they do not

understand the relevant quality attributes [11].

Furthermore, in software development industry, schedules

are tightly restricted because of the consumer need and

pressure; developers are forced to weigh the significance

of software quality against the possibility of missing

deadlines. For meeting the target, „on time delivery‟,

testing time is normally reduced. It increases the

possibility for defects, leading to problems with the

software that include incomplete design, poor quality, high

maintenance cost and also the risk of losing customer

satisfaction. In order to meet the changing demands of

valuable customer or due to many other reasons, software

needs to be changed or modified from time to time interval

[10].

This procedure of software modification or maintenance is

usually carried out by programmers, which may not have

developed that software. They need to read and understand

source programs and other relevant documents. Even for

the software developers of the project, after an interval of

few years, it may not be an easy task for them as they

themselves might have forgotten the details of the

software.

False interpretations can lead to misunderstandings and to

faulty development results. Complex design may lead to

poor maintainability, which in turn leads to ineffective

testing that may result to severe drawbacks and

consequence. It is well known fact that flaws of design

structure have a strong negative effect on software quality

attributes. Other than, creating a high quality design

continues to be a poorly defined process [14].Therefore;

product design should be developing in such a manner so

as to make them easily maintainable and preferably stable.

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.54236 958

II. SOFTWARE MAINTAINABILITY

The key word of maintainability for software first

appeared in the categorization of maintenance. It is also

planned as the first major attribute of good designed

software given by Sommerville [39] in the starting of his

book. Maintainability is an essential and precious quality

characteristic of software. Software maintainability always

supports the maintenance process and assists the creation

of superior quality software. An accurate measure of

software quality totally depends on maintainability

measurement. A lack of maintainability constantly

contributes to a higher maintenance charge and effort [7,

8]. The aspiration of increasing the maintainability of

object oriented design is not just to detect defects but more

significantly, to detect defects as soon as they are

introduced [9, 11].

III. CLOSELY RELATED WORK

This section presents the result of a related literature

review conducted to collect evidence on object oriented

software maintainability evaluation. Broad range of

maintainability evaluation models have been proposed in

the literature within last two decades. The research on

software maintainability first appeared in the year 1975. It

is adopted in Jim McCall and Boehm quality model, which

build the basis of ISO 9126 software quality model.

Muthanna et al. (2000) developed a maintainability

assessment model by the use of polynomial linear

regressions. This model was helpful only for procedural

software and not suitable for object oriented software.

Study highlights that software maintenance is a time

consuming and costly phase of a software development

life cycle. The authors examined the use of software

design metrics to evaluate the maintainability of software

systems. A guideline for assessing, estimating and

choosing software metrics for predicting software

maintainability was presented. In addition, a linear

prediction model based on a smallest set of design level

software metrics was planned.

Hayes et.al (2003) introduce the Observe Mine Adopt

(OMA) model that helps organizations in making

improvements to their system development life cycle

without committing to and undertaking large scale

sweeping industrial process improvement. Especially, the

method has been applied to get better software practices

focused on maintainability. This novel approach is fully

based on the theory that software teams naturally make

observations about things that do or do not work well. In

the context of software maintainability, it is then essential

to perform some measurement to make sure that the

method results in enhanced maintainability.

Di Lucca et.al (2004) provided web application based

maintainability model faithful to web applications only.

Authors stated the increasing distribution of web based

services in many and diverse business domains have

triggered the need for new web applications. The urgent

market demand enforces very short time for the

development of new web applications and recurrent

modifications for existing ones. The authors introduce a

first idea for a web application based maintainability

model. Author stated Maintainability of a web based

application, with indication to the Source Code Control

and Information Structure characteristics may be

expressed as a function of the thirty nine (39) attributes:

web based application (WA) Maintainability = F (γi, Ai)

i=1... 39. Where Ai is the value of „i
th‟

 maintainability

attribute & „γi‟ is the weight to allocate to that attribute

according to how much the attribute affects the

maintainability. The proposed model considers those

peculiarities that make a web application special from a

conventional software system and a set of metrics

allowing an assessment of the maintainability is

recognized. Results from a few initial case studies to

confirm the usefulness of the proposed model are

presented in the paper.

Work done by Hayes & Zaho (2005) proposed a

maintainability evaluation model that categorized software

modules as “easy to maintain” and “not easy to maintain”.

Such categorization can assist to recognize the modules,

which are not easy to maintain. Author performed

correlation-analysis and observed that software coding

effort correlates with software maintainability. Study

developed a new measure that captures the relationship

among requirements effort, design effort and coding effort.

Next, study built a regression model, namely

Maintainability Prediction Model (MainPredMo). Author

used regression analysis to construct a prediction model,

and obtained the following: MainPredMo =3.795 +

1.652RDCRatio. Analysis showed that this model has a

very low statistical significance value of 0.005 and an R

square value of 0.64.

Van Koten (2006) presents a Bayesian network

maintainability prediction model for object oriented

software. The model is developed with the help of object

oriented metric data presented in Li and Henry's datasets,

which were composed from two dissimilar, object oriented

software systems. Prediction correctness of the model is

calculated and compared with existing models. This paper

evaluates and compares the OO software maintainability

prediction model experimentally, using the given

maintainability prediction accuracy measures: absolute

residual (Ab.Res.), the magnitude of relative error

(M.R.E.) and prediction measure. The Ab.Reslt. is the

absolute value of residual given by: Ab.Res. =| actual

value − predicted value |The results recommend that the

Bayesian network model do not calculate maintainability

more accurately.

MO. Elish & KO Elish (2009) proposed TreeNet model

for maintainability prediction can be consideration of as a

series expansion similar to the proper functional

relationship. TreeNet model uses two famous object

oriented software datasets published by Li and Henry:

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.54236 959

UIMS and QUES datasets. The proposed model results

designate that competitive maintainability prediction

precision has been gained when applying the TreeNet

model. Study shows future work would be conducting

additional studies with other datasets to extra support the

findings of this paper, and to understand the full potential

and probable limitation of TreeNet.

Work done by C Jin & JA Liu (2010) presents the

applications of support vector machine and unverified

learning in object oriented software maintainability

prediction via metrics. In this study, the maintainability

analysis is carried out at the source code level of

development life cycle. The proposed dependent variable

was software maintenance effort. Similarly the

independent variables were five object oriented metrics

determined clustering method. The results showed that the

mean absolute relative error was 0.218 of the predictor.

Consequently, we found that support vector machine and

clustering method were helpful in developing software

maintainability predictor. Novel predictor can be used in

the related software developed in the same background.

Gautama Kang (2011) highlighted measurement of the

software maintainability near the beginning in the

development life cycle, particularly at the design time, and

it help designers to integrate required improvement and

corrections at design phase for improving software

maintainability of the delivered software. This paper has

proposed a multivariate linear model Compound

MEMOOD, which estimates the maintainability of class

diagrams of software systems. Earlier MEMOOD model

(Maintainability = 0.126 + 0.645 * Understandability +

0.502 *scalability) was developed which estimates the

maintainability of the software system on the basis of

object oriented metrics. Subsequently study make a

comparison of MEMOOD model and Compound

MEMOOD model it is found that Compound MEMOOD

Model have “R Square” value equals to one which shows

that it best fits the data. MEMOOD Model doesn‟t have R

Square value equals 1. Considering the value of R Square

author claimed Compound MEMOOD Model has better

results than MEMOOD Model. Moreover, no empirical

validation has been presented in this study to justify the

results.

Alisara Hincheeranan et.al (2012) proposed

maintainability estimation tool (MET) consists of the four

components. (1) UML Case Tool (2) XMI Parser (3)

Metric Calculate (4) Display Results. He stated measuring

maintainability of software system at the code level may

facilitate a software designer must improves the

maintainability of software before deliver to a customer.

This work assist a software designer for improves the

maintainability of class diagram at code level and facilitate

reduces the growing high cost of software maintenance

phase. Moreover, no quantitative model has been

presented in this study.

Al Dallal, J. (2013) considers classes of three open source

software systems. For every class, study accounts for two

real maintainability indicators; (1) the number of revised

lines of code (2) the number of revisions in which the class

was concerned. With 19 internal quality estimates, authors

discover the impact of size, cohesion and coupling on

class level maintainability. Obtained results show that

classes with improved qualities (higher cohesion values

and lower coupling and size values) have always better

maintainability (i.e. are more possible to be effortlessly

modified) than those of inferior qualities. The proposed

prediction models can help software designers to find

classes with low maintainability.

In the study done by R., & Chug, A. (2014) proposed a

new metric suite to overcome the deficiencies and redefine

the association among design metrics with software

maintainability in data intensive applications. The

proposed metric suite is estimated, analyzed using five (5)

proprietary software products. The outcomes show that the

proposed metric suite is very helpful for maintainability

prediction of software systems in general and for data

intensive software systems in particular. The proposed

metric suite may be considerably useful to the developers

in studying the maintainability of intensive software

systems before deploying them.

Work done by Singh et al. (2015) focused on a set of

object oriented metrics that can be used to evaluate the

maintainability of an object oriented design. In this study

researcher used the CK metrics to study the effect of

various factors related to class and find out which of them

have more relevance in measuring the maintainability of

software as early as in its design process. During this work

author studied metrics, WMC (Weighted Methods per

Class), Number of Children (NOC), Depth of Inheritance

Tree (DIT), coupling between Objects (CBO) and

Response for a Class (RFC) metrics for evaluation of the

package designs. Study also found out that value of RFC

doesn‟t need to be low for developing a less fault prone

software.

IV. COMPARATIVE STUDY

A complete charting of the existing Maintainability Models Consider by Various Expert has been done in Table 1

After an in depth review, it is apparent that maintainability evaluation should be done at design phase of development

life cycle. To evaluate maintainability at design phase it is important to discover maintainability factors that have direct

impact on maintainability evaluation. It is obvious from comprehensive literature review that Changeability and

Stability is a most important factor for object oriented software maintainability which increases the performance of

maintenance process.

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.54236 960

Table 1: A Systematic View of Maintainability Models Consider by Various Expert

Year Study/Author Maintainability Evaluation

Approach / Model

SDLC

Phase

Validation

1984 G.M-Berns Maintainability Analysis Tool for use

with FORTRAN on a VAX

Not given No Implementation

1985 T.P. Bowens Average number of days to repair

code

Code Level

No

1985 Sneed Mercy Fuzzy Model Code Level No

1987 Kafura and

Reddy

Cyclomatic complexity as well as six

other software complexity metrics

Code Level

No

1987 Robert Grady

(At HP)

FURPS Model Code Level

Theoretical

justification

1991 Geoffrey &

kemere

Cyclomatic Complexity Density Code Level Yes

1992 Oman

Hagemeister

Halstead‟s Effort (aveE), McCabe‟

Cyclomatic Complexity (G), LOC

(Lines of Code)

Code Level

No

1993 Li Henry

Henry model based on

coupling between classes

Code Level

Yes

1994 Coleman Oman Oman model Code Level Yes

1995 Welker Oman (Improved Oman Model)

 Cyclomatic Complexity V(g‟),LOC

(Lines of Code)

Code Level

No

1995 Dromey‟s

“Quality Model”

Quality Model Code Level

Theoretical

justification

2000 Muthanna et al.

Model based on Polynomial Linear

Regression

Design Phase

No

2003 Huffman Hayes

et al.

 Observe Mine Adopt (OMA) Based

on Maintainability product

Code Level

No

2004 Lucca Fasolino

WAMM

Web Application Maintainability

Model

Web based

Approach

Web based

Approach

2005 Hayes Zaho

(Main Pred Model) LOC (Lines of

Code), TCR (True Comment Ratio)

Code level

No

2006 Koten Gray Bayesian Network Maintainability

Prediction Model

Code level

Yes

2008 Prasanth Ganesh

& Dalton

With the help of FRT(Fuzzy

Repertory Table)

Design Phase No

2009 MO. Elish & KO

Elish

Produced Treenet model using

stochastic gradient boosting

Code level

No

2010 C Jin & JA Liu

Based on Support vector machine Code level

Based on vector

machine

2010 S. Rizvi et al. MEMOOD Model Design Phase No

2011 Gautama Kang Compound Memood Model Design Phase No

2012 Alisara et al. Maintainability Estimation Tool

(MET)

Code level

No

2013 Al Dallal, J.

Object-oriented class maintainability

prediction using internal quality

attributes.

Design and

code level

No

2014 R. & Chug A. A Metric Suite for Predicting

Software Maintainability in Data

Intensive Applications.

Code level

Based on Metrics

2015 Singh et al.

 Estimation of Maintainability in

Object Oriented Design Phase: State

of the art

Design phase Theoretical

Explanations

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.54236 961

V. CONCLUSION

A lot of maintainability approaches have been proposed in

the existing literature for evaluating software

maintainability. A review of the related literature shows

that most efforts have been put at the later phase of

software development life cycle especially at code level. A

judgment to change the design in order to get improved

maintainability after coding has started is high costly and

error prone. For that reason, it is an obvious fact that

evaluating maintainability early in the development

process greatly reduces maintenance cost, effort, and

rework. On the other hand, the lack of maintainability at

early stage may not be compensated during subsequent

development life cycle. In order to obtain consistent and

correct measures of maintainability, it is advisable to

recognize the factors that affecting maintainability

directly. Though, getting a universally accepted set of

maintainability factor is impossible, effort have been made

to identify the maintainability major contributors for the

same.

REFERENCES

[1] K.K. Aggarwal, Yogesh Singh.”Software engineering. “ New Age

International Publishers, Jan 1, 2005

[2] Hardeep Singh and Aseem Kumar. "A Novel Approach to Enhance

the Maintainability of Object Oriented Software Engineering
During Component Based Software Engineering. "International

Journal of Computer Sci. and Mobile Computing 3.3 (2014): 778-

786.
[3] Al Dallal, Jehad. "Object-oriented class maintainability prediction

using internal quality attributes." Information and Software

Technology 55.11 (2013): 2028-2048.
[4] Pradeep Kumar Singh and Om Prakash Sangwan. "Aspect Oriented

Software Metrics Based Maintainability Assessment: Framework

and Model." The Next Generation Information Technology Summit
(4th International Conference) (2013): 1-07.

[5] McCall, J.A., Richards, P.K., and Walters, G.F., (1977) “Factors in

Software Quality”, RADC TR-77-369, Vols I, II, III, US Rome Air
Development Center Reports.

[6] G. M. Berns. “Assessing software maintainability” .ACM
Communications, 27(1), 1984.

[7] Bowen, T. P., Wigle, G. B., Tsai, J. T. 1985. “Specification of

software quality attributes “. Tech. Rep. RADC-TR- 85-37, Rome
Air Development Center.

[8] Sneed, H., Mercy, A., “Automated Software Quality Assurance”.

IEEE Trans. Software Eng., (1985)11Bi, 9: 909-916.
[9] Grady, Robert, Caswell, Deborah (1987), “Software Metrics:

Establishing a Company-wide Program “. Prentice Hall. pp. p.

159.ISBN 0138218447.
[10] Gill Geoffrey K. and Chris F. Kemerer. (1991). “Cyclomatic

Complexity Density and Software Maintenance Productivity”,

IEEE Transactions on Software Engineering, Dec, pp.1284-1288.
[11] P. Oman and J. Hagemeister, “Metrics for assessing a software

system's maintainability, “Software Maintenance, 1992, pp. 337 - 344.

[12] W. Li and S. Henry, “Object-Oriented Metrics that Predict
Maintainability”, Journal of Systems and Software, vol 23, no.2,

1993, pp.111-122.

[13] D. Coleman, D. Ash, B. Lowther and P. Oman, “Using Metrics to
Evaluate Software System Maintainability”, IEEE Computer; 27(8),

pages 44–49, 1994.

[14] Welker, K. and Oman, P.W., “Software Maintainability Metrics
Models in Practice, CrossTalk, Nov./Dec.1995, pp. 19-23 and 32

[15] Geoff R. Dromey's Model,” A Model for Software Product

Quality”, IEEE Transaction on Software Engineering, Feb. 1995,
vol. 21 no. 2.

[16] Dromey, R.G., “Concerning the Chimera”. IEEE Software 13 (1),

pp. 33--43, 1996.

[17] S. Muthanna, K. Kontogiannis, K. Ponnambalaml and B. Stacey,
“A Maintainability Model for Industrial Software Systems Using

Design Level Metrics”, Working Conference on Reverse

Engineering (WCRE‟00), 2000
[18] M. Genero, M. Piattini, E. Manso, G. Cantone, “Building UML

class diagram maintainability prediction models based on early

metrics”, Proceedings 5th International Workshop on Enterprise
Networking and Computing in Healthcare Industry, , IEEE, 2003,

pp. 263-275.

[19] Hayes, J. Huffman, Mohamed, N., Gao, T. “The Observe-Mine-
Adopt Model: An agile way to enhance software maintain ability”,

Journal of Software Maintenance and Evolution: Research and

Practice, Volume 15, Issue 5, Pages 297 – 323, October 2003.
[20] G. DiLucca, A. Fasolino, P. Tramontana, and C. Visaggio,”

Towards the definition of a maintainability model for web

applications”. Proceeding of the 8th European Conference on
Software Maintenance and Reengineering, IEEE Computer Society

Press, 2004, pages 279– 287.

[21] Kiewkanya, M., Jindasawat, N., Muenchaisri, P., (2004) “A
Methodology for Constructing Maintainability Model of Object-

Oriented Design,” Proc. 4th International Conference on Quality

Software, 8 - 9 Sept., 2004, pp. 206 - 213. IEEE Computer Society.
[22] Hayes J.H. and Zaho L (2005), “Maintainability Prediction a

Regression Analysis of Measures of Evolving Systems”, Proc.21st

IEEE International Conference on Software Maintenance, 26-
29 Sept.2005, pp.601-604.

[23] C.V. Koten, A.R. Gray, “An application of Bayesian network for

predicting object- oriented software maintainability”, Information
and Software Technology Journal, vol: 48, no: 1, pp 59-67, Jan

2006.

[24] K.K. Aggarwal, Y. Singh, P. Chandra and M. Puri, “ Measurement
of Software Maintainability Using a Fuzzy Model”, Journal of

Computer Sciences, vol. 1, no.4, pp. 538-542, 2005 ISSN 1549-

3636 © 2005 Science Publications.
[25] K. K. Aggarwal, Y. Singh, A. Kaur and R. Malhotra, “Application

of Artificial Neural Network for Predicting Maintainability using

Object-Oriented Metrics”, World Academy of Science, pp. 140-
144, 2006.

[26] Subhas Chandra Misra, “Modeling Design/Coding Factors That

Drive Maintainability of Software Systems”, Software Quality
Journal, 13, pages 297- 320, 2005.

[27] Y. Zhou and H. Leung, "Predicting object-oriented software

maintainability using multivariate adaptive regression splines”,
Journal of Systems and Software, vol. 80, no. 8, pp. 1349-1361,

2007

[28] Wang Li-Jin Hu Xin-Xin Ning Zheng-Yuan Ke Wen-Hua
,“Predicting Object-Oriented Software Maintainability Using

Projection Pursuit Regression.”, Proceedings of the 2005
International Conference on Software Engineering Research and

Practice, SERP ,vol.2,pp.942-946.

[29] MO. Elish and KO. Elish, “Application of TreeNet in Predicting
Object-Oriented Software Maintainability: A Comparative Study”,

European Conference on Software Maintenance and Reengineering,

pp 1534-5351, March 2009, DOI 10.1109/CSMR.2009.57.
[30] Rizvi S.W.A. and Khan R.A. (2010) “Maintainability Estimation

Model for Object-Oriented Software Design Phase (MEMOOD)”,

Journal of Computing, Volume 2, Issue 4, April 2010,
[31] Malhotra et.al, “Software Maintainability Prediction using Machine

Learning Algorithms.” Software Engineering: An International

Journal (SEIJ), Vol. 2, No. 2, September 2012
[32] L Ping, “A Quantitative Approach to Software Maintainability

Prediction”, International Forum on Information Technology and

Applications, Vol: 1, No: 1, pp: 105-108, July 2010.
[33] C Jin , A. L. Jin , “Applications of Support Vector Machine and

Unsupervised Learning for Predicting Maintainability using Object-

Oriented Metrics”, Second International Conference on Multi
Media and Information Technology , vol 1, no : 1, pp 24-27, April

2010.

[34] Gautam C, kang S.S (2011), “Comparison and Implementation of
Compound MEMOOD MODEL and MEMOOD MODEL”,

International journal of computer science and information

technologies, pp 2394-2398.
[35] Malhotra et al. “Software Maintainability Prediction using Machine

Learning Algorithms.” Software Engineering: An International

Journal (SEIJ), Vol.2, No. 2, September 2012 Alisara Hincheeranan

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.54236 962

and Wanchai Rivepiboon,” A Maintainability Estimation Model
and Tool.” International Journal of Computer and Communication

Engineering, Vol. 1, No. 2, July 2012.

[36] Dubey et.al.”Maintainability Prediction of Object Oriented
Software System by Using Artificial Neural Network Approach.”

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-2, May 2012.
[37] Laxmi Shanker Maurya et.al,” Maintainability assessment of web

based application.‟‟, Journal of Global Research in Computer

Science, Vol 3, No. 7, July 2012.
[38] Sommerville. “Software Engineering”. 4th ed. New York, Addison-

Wesley, (1992).

[39] McCall, J.A., Richards, P.K., and Walters, G.F., “Factors in
Software Quality”, RADC TR-77-369, Vols I, II, III, US Rome

Air Development Center Reports, (1977)

[40] Boehm, B. W., Brown, J. R., Kaspar, H., Lipow, M., McLeod, G.,
and Merritt, M., (1978) Characteristics of Software Quality, North

Holland.

[41] ISO 9126-1 Software Engineering - Product Quality - Part 1:
Quality Model, 2001.

[42] Grady, Robert, Caswell, Deborah (1987), Software Metrics:

Establishing a Company- wide Program. Prentice Hall. pp. p.
159. ISBN 0138218447.

[43] Sneed, H., Mercy, A. “Automated Software Quality Assurance”.

IEEE Trans. Software Eng., 11Bi, 9: 909-916, (1985),
[44] Rizvi, S.W.A., Khan, R.A.,” Maintainability Estimation Model for

Object-Oriented Software in Design Phase”, Journal of Computing,

Volume 2, Issue 4, (April 2010),
[45] Hordijk, Wiebe, and Roel Wieringa. "Surveying the factors that

influence maintainability: research design." ACM SIGSOFT

Software Engineering Notes. Vol. 30. No. 5. ACM, 2005.
[46] Vivek Rai, Akhilesh Mohan Srivastava, Himanshu Pandey, Dr. V.

K Singh “Estimation of Maintainability in Object Oriented Design

Phase: State of the art”, International Journal of Scientific &
Engineering Research, Volume 6, Issue 9, September-2015.

